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ABSTRACT

Areal spaces of different types have been studied by several authors, including Cartan [1], Davies [2], Kawaguchi [3] and
several others. The study of areal spaces through parameter invariant multiple integrals is of great significance as the
geometrical theory of areal spaces based on multiple integrals by Rund [8, 9] generalises both Finsler as well as Cartan
spaces. Following Rund’s approach, various aspects of areal spaces have been studied by Rastogi [5, 6, 7]. The aim of this
paper is to continue that study and give some fundamental relations based on geometrical theory of multiple integrals. In
this paper, | have defined and studied torse forming vector fields as well as defined and studied concurrent vector fields in
an areal space X4, parameterised by a subspace C2. Besides fundamental tensors and relations, | have also studied special

areal spaces like C-reducible areal spaces and some of their properties.
KEYWORDS: Areal Spaces, Torse Forming Vector Fields. Concurrent Vector Fields, C-Reducible Areal Spaces

INTRODUCTION

Let Xn be an n-dimensional differentiable manifold with local coordinates xi (i = 1,..., n) and Cr be an r-dimensional

subspace represented by
X' =x(tY),A=1,...,r (r<n) (1)

where tA denotes a system of r independent parameters on Cr such that Rund [8] x’iA = 0 xi/ 0tA. In such a space let us
suppose that we are given a function L (xh, x’hE) of n + nr, variables xh, x’hE, which satisfies fundamental conditions

given in Rund [9] such that

(@A L) x5 =L &% )
For such a manifold the metric tensor can be expressed as [9]

g*% (", x"e) = (112) r (2°%; 4 L") 3

If giAjB is the reciprocal tensor of the metric tensor gAiB, we have

0" %% g'Ws = 8 8% (4
On the basis of this metric tensor we have [9]

CABP=(112) (0 g"P; %)
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and for 01 = 0/0xi
VAB) = (172)@ ™E + 6 9% - ac 977), (6)
which for

er = 0 X", G'8"p =(1/2) (9 ot 9 D B) CABE Fn=0""m CA°F
j

and

P""5 = G3"o(VAB) - CABEF fMer)defines [9]

I =1 (Py®s + x""a 0% Py ) )
such that Iy x, = P'®a x5

For a set of linearly independent differentiable vector field X',, tangent to C, in X,,, we have following covariant derivative
of Xia, Rund [9]

X'aj =0 X'a— (0P X'a) T34 XM + Ty X"a.. (8)

We also have for T, = [y, — Dy,

CrmfX amn} = XIa K¥n — (078 X'a) K™ x7P5 + They X' )
where

Klikn = Gy 100 T — (0% Th) TP X + T o T3 (10)
and

K*ijkh = Kijkh + Timj T+ C(k,h){Tikj/h + T Tmhj} (11)

In an earlier paper [7], | have defined following entities:

an g% = MAB L+ MBA L M, = gf)s MAS 1, M7y = MYy — CL P M X7 (12)
and

AlF = LY (nY2C5, CF = CABF g als (13)
If covariant differential in an areal space X, is defined by

D X'a=Xandx"+ X'a,. 5 Dm'e (14)
where mhE represents a unit vector in Xy, such that m"e = L™ (r)"¥2 x*"¢ and

Xarn=0n X'a— (@5 X ) MK x°e + X" M, (15)
and

X, F = LY (Y2 05, X'a + X" Al (16)
Alternatively, for, d X'a = (8, X'a) dx" + (°F, X'a) dx’"z, D X', can also be expressed as

D X'a=d X's + C\E, X¥a dx’™e + My, XKa dX™ 17)
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In place of definition (16), we can also use

T'a% k= 0Pk TA% + 0''e Cn" 0k — g'e'r CF0 T'a% (18)
which gives X'a,,Px = L' (N2 X'a% g%%° = 0.
Corresponding to covariant derivative defined by (1.15), we can obtain

X'a nk—X'a kn = XIa Rl — (0% X'a) R x5 + X'a j T ey (19)
where T 4, =M 94, — M 9, and

Rl = Gk {0n M i — (@A M i) M My xPa+ M “p M P} (20)
Space X4 Parameterised by C2
Incase of n=4 and r = 2, i.e., X, parameterised by C,, we shall have

LA = (1/2) LY2 (@A L) (21)

If L'a = LY2x°,, it satisfies LA L'a = 1, i.e., it is reciprocal of L*;
From equation (21), we can obtain

LY xy = (12) L, LY x7, =0, L5 X = 0, L x7 = (1/2) LY (22)
Or alternatively we have

LA x's = (1/2) LY? 5% (23)
which gives L* x5 = LY?
From equation (21), we can also have L*® = 8°%; L®, and

LAB = L2((1/2) 8 oA L— LA LB} (24)
which satisfies

LYY x' = - (12) LY, LY x7y = (1/2) L%, LY x7, = 0, LY x, = - LY,

L%, x7 =- L3, L3 7' = 0, L3 x'y = (12) LY, L% x7', = - (1/2) LY (25)
Or alternatively we shall have

LAB x7'a =0, LAR x'5 =- (3/2) LA, LA x'g x71a = - (3/2) L (26)
In X, parameterised by C,, from equation (3) we can have

gh% =2 (L2 LA + LALD) (27)
which satisfies

gAiBj X,lA =9 L2 LBJ_, gAiBj X,lB —_o L2 LAJ_’ gAiBj X,iA X,JB =2L (28)
In X4, we can also define

hAiBj =92 L1/2(a,Bj a,Ai L1/2) =2 L1/2 LAiBj - gAiBj _92 LAi LBJ' (29)
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which satisfies satisfies "%, x*' = 0.
Mutually Orthogonal Unit Vectors In X, Parameterised by C,. Corresponding to LiA, in X4, we can also define mutually

orthogonal unit vectors M*;, N* 1, and N” 4, such that

LA M'A =0, MA Mg =1, LA Niga = 0, MA Niga = 0, N'agy Ny = 1,

LA Niga =0, M4 Niga = 0, N% ) Nipa = 0, N2y N'pa = 1 (30)
In X4, g*?; and h"®; can explicitly be defined as

0"% = 2(L% L% + M M) + Ny NPy + Ny N ) (31
and

h™%5 = 20M% M + Ny NP + N N°y) (32)
Corresponding to these tensors giAjB can be written as

glAJB = L'a Ug + M'a Mg + Ni(l)A Nj(l)B + Ni(Z)A Nj(z)s (33)
From equation (2.8), we can obtain by virtue of L% = "% LA%;,
a,Dk hAiBj - L-1/2 LAiBj (67Dk L) +2 Ll/2 LAiBjDk (34)
From equation (5) by virtue of (29) and (35), we get

CAiBjDk - L1/2 LAiBjDk + I—Ai LBjDk + LBJ I—DkAi + I—Dk I—AiBj (35)
which satisfies

(LY LABP - CABPY L'aUg =0 (36)
If we assume that that h"®; = 0, equation (2.8) and (3.2) give g"? = 2 L% L%, LP®, = 0, therefore equation (3.6) gives
CA®Px=0. Conversely, if CA%°, =0, we get

P AB = - 2(L4 L%+ LB L2 (37)
which implies 8°° (%) x™*5 = 0. Hence:

Theorem 3.1.: In an areal space X4 parameterised by C,, vanishing of h*;® j is the sufficient condition for CAiB,-Dk to vanish.
Conversely, if C*5° = 0, the tensor "%, is homogeneous of degree zero in x**p.

Tensor C*%° In X, Parameterised by C,.
Now we are interested in writing the value of cABD i K explicitly in terms of unit vectors. Let us assume that tensor cABD i k1S
expressed as

CA%% = Cy M MP MPy + Ciay Ny NPy NPjic + Ciay Ny N° o NP + 272 {Ca) M M7 NPy + Ci)
M* MP; NPy + Cro) Nay Ny MP + Cpay Ny NPy Ny + Crg) Ny N° 2y M+ Ciop Ny N2 NPy + Cag
MANB w5 NPy + NPy NP1y} (38)
Multiplying equation (38) by g’s*, we get by virtue of equation (30) and (33)

C%=(Cy + Ce + Cg) M* + (Cy + Cay + Co)N"(w1 + (Cpy *+ Ci5) + Cp)) Ny,
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which by virtue of of C*, = C M*; leads to
Cy+tCet+Ce =C CptCu+Cq =0,C5+Ce+Cqr=0 (39)
Hence:

Theorem 4.1: In a four-dimensional areal space X4, parameterised by a two-dimensional subspace C2, the tensor
CAIiBjDk is symmetric in the pair of indices (A, i), (B, j) and (D, k) and it is expressed by equation (38) such that its
coefficients satisfy equation (39).
Multiplying equation (39) by M'a, N'y)a and N'pa respectively, we get by virtue of CA8% M'a = CBP,, CA8P
Ni(l)A - 1CBjDk and CAiBJ_Dk Ni(Z)A - ZCBjDk
. C% = Cu 'I;/'Bj MDkB+ C(4)D(MBj NPk + MP NP) + Cisl(M%j NPy + M Ngy) + Ce) N°(ay NP + Cgy N
NZ@k + Cao(N“wj N"@k + N7 N= @), (40)

. DlCBjDk =Cp) "3\‘8(131' Nk * Cy M% M+ Cigy(N® 1y M2y + NP(iye MB) + Cry (NP Nt NP2y NP1y + Cpg)

N2 N2k + Cagy(M7j N7 + M7 ()
(41)
and

2CPPk = Cay NP NP gy + Cig) M MPy + Cy N(g) NP1y + Cg)(NPy MOy + NP M)

+ Cie)(N® 2y N2 + NPy NP1y + Caoy(MP) NP gy + MPy NE (1) (42)
From equations (39), (40), (41), (42) we can further obtain

CAiBjDk - CBjDk MA + 1CBjDk NA(1)| + ZCBjDk NA(2)| 43)
which implies:

Theorem 4.2: In an areal space X4, parameterised by subspace C2, the tensor CAiBjkD can be decomposed in terms of the

vectors M*;, N* ), and N ), and expressed in the form of equation (4.4).

From equations (39), (40), (41), (42) we can further obtain

C%Pk M'g = Cy M+ Ciay NPy + Cis) N (44)
C%% N'ws = Ciy MPic+ Cig) N2y + Cragy NP = 'C P Mlg (45)
CBjDk Nj(Z)B =Cy MP + Ce ND(z)k + Cuo) ND(l)k = 2CBjDk Mg (46)
"%k N'ws = Cy Ny + Ce) M°k + Cy NP (47)
€%k Nios = Ciy NPk + Cg) NP + Caaoy MPi = C5 P iy (48)
*C5%% N’ = Cg) Ny + Cgy MPk + Cig) N2 (49)

From equations (5.5) a, b, ¢, d, e, f, we can obtain the values of coefficients C(1) to C(10) as follows:

Cay = C%% Mg Mg, Cipy = "C%Pk Nlwys N¥uo, Ci) = 2CB% Nligie N¥yp, Cay = CB%% Mig N¥yp = C%Px Nlys
M*5, Cis) = C%P Mig N¥20 = CB%% Niiys M¥5,Ce) = C%Pk Nlgys N¥yp = *C8% Nlye M5, Cpry = 'C%P Nlpys N¥ 0 =
1CBjDk Nj(Z)B Nk(l)D,C(S) = CBjDk Nj(Z)B Nk(2)D = 2CBjDk NJ(Z)B MkD: C(9) = 1CBjDk Nj(Z)B Nk(Z)D = 2CBjDk NJ(Z)B Nk(l)D,C(lo) = CBjDk
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N’ e N 20 = C5P Niye N¥yp = "CBPk Nl M (50)
Hence:

Theorem 4.3: In an areal space X4, parameterised by subspace C2, the coefficients C(1) to C(10) of equation (40) are
given by equation (50).

Also, from equation (43), we can obtain
CPP Mg + 'CBP Nyys + °C% P Nl = C° (51)
Hence:
Theorem 4.4.: In a four-dimensional areal space X, parameterised by C,, the vector CP satisfies equation (51).
C- Reducible Areal Spaces

In this section we are interested in studying C-reducible areal space X4, parameterised by C2, which has earlier been

studied by the author [7]. Here in such a C-reducible areal space we shall have

CAPPc= (1/10) (P CP + hBP CA + hPA CF)) (52)
Substituting the value of tensor field h*%; and CP,,, we can write equation (52) as
CABPk = (C/5)[3 MA MP MPy + S (A PMA (NP NPy + NB (o) NP1y 1] (53)

Comparing equations (40) and (53), we can establish
C(l) = 3C/5, C(z) = 0, C(g) = 0, C(4) = 0, C(5) = 0, C(ﬁ) = C/5, C(7) = 0, C(g) = C/5, C(g) = 0, C(lO) =0. (54)
Hence:

Theorem 5.1: If a four-dimensional areal space X4, parameterised by C2, is a C-reducible areal space, its coefficients
satisfy equation (54).

The tensors C%°, "C®° and 2C®°, defined in (40), (41), (42), (43) shall be given by

C®Pc = (C/5) (3 M® My + NB1y; NP(yyc + N2 NP2y (55)
'C8P = (C/5) (M® NP gy + MP NBy) (56)
CBP = (CI5) (M®; NPy + MP N ) (57)

Torse Forming Vector Fields

Def. 6.1: A vector field X'a(x), in an areal space X, parameterised by C, shall be called torse forming vector field, if it

satisfies

X', k=ha 8%+’ op X' (58)
where A, is a scalar field and uDk op IS a non-zero vector field.
From equation (6.1), we can obtain

XiA, hk= & ha kTt (HDh kOD T P-Dh Op k) X'a+ P-Dh op(ra 8+ !lek OE XiA)
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Which by virtue of equation (19) gives on Simplification
XIa Rl — (0% X'a) Rk X8 + X' T0= Gy {80(ha & — Aa 1P 00) + X'a (1% k 00 + 1% 6p 1) (59)
which can be expressed as

XIa Rl — (0% X'a) R X8 = Gy 18(ha  k — *a 1Pk 0p) + X'a (1%« 00 + 1% 0p k — 1 060 M) — Aa
M’} (60)

Hence:
Theorem 6.1: A torse forming vector field X'(X), in an areal space X, parameterised by C,, satisfies equation (60).
Concurrent Vector Fields

Def. 7.1: A vector field X'a(X), in an areal space X, parameterised by C,, shall be called concurrent vector field if it

satisfies equations

X'a j=%adl, (61)

X'a CEBP = 0a 9% 00, (62)
where @, is a scalar in C; satisfying pa ¢” =T 0.
Let X', in X4, parameterised by C,, be expressed as

Xa=alia+BMa+yNgpatONpa (63)
From equations (62) a and (63), we can write

Xaj=tadj=a L'atB Maty iNpa+ O NgataLla j+pMaj+7 N+ ONpga
which on simplification by virtue of

L'a.j =0, M'a j =B(hy N'wa + J; N'ga), Nia, 1= v(-hy M'a + ki Niya), Nigya = O(j; M'a = kj N'1y) (64)
where h;, j; and k; are vector fields similar to, h-vectors of Finsler space, leads to following relations

aj =MLl B =y h—0ji+raMA, v =-Bhi+Ok+ra Ny, © j=-Bji—vk+2xa Ny (65)
From equations (38) and (7.2), we can get

X'a CAFPk = B{Cy M MP + Cigy(M% N2y + MPi No) + Cgp(M%j NPy + M7 NP (o) + gy Ny NPy +
Cie) N% Nk + Cao(N%wy Neyk + N N°wid) + 1{Cp) NPy N2y + Cry M% MPc + Cig(M% NPy + MPy NPy +

Cay(NPwy NPy + NPy Nzy) + Co NPy NPy + Cagy (M%) NPy + MPy NP o)} + ©{Cig) NP2 NP + Cig) MPj MP +
CN® oy NPy + Cg(MP) NP gy + M2 NE o) + Ciop(N® 2y NPy + NP NP ay) + Caoy(MPj NPy + MP NP 1)} (66)

which by virtue of equations (40), (41), (42) can be expressed as

XiA CAiBjDk -B CBjDk +y 1CBjDk +0 ZCBjDk (67)
From equations (62) and (67), we can obtain

BCPP+y'CBP+0°CE =20 h%0 (68)
which on simplification and multiplication by M*5, N 0 and N¥ ;)5 respectively shall give

CoyB+Cuy1+Cr0=40, Cyf+Cpr v+ CupO =0,C B+ Cugy+CeO=0, (69)
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CoBP+Copr+tCnO=40¢, Cyf+Cr v+ CuO =0,Cug)p+Cryy+CO=0, (70)

CePtCortCeO=40, C5P+Cuyy+tCeO =0,CugP+Cpry+Ce6O=0, (71)
Equations (69), (70), (71) help us to give

¢ =P C/12, Ce(C9 Caaoy ~ Cty C@) ~ C6)(Cie) Cio) ~ Ce) Cao) + Caoy(Ces) Cy —~ Caay) = 0 (72)
Hence:

Theorem 7.1: In a four-dimensional areal space X, parameterised by a subspace C,, a concurrent vector field X', is such

that some of its coefficients satisfy equation (72).
In case of a C-reducible areal space, equations (66) can be expressed as

X'a CAPk = B(Cy M MP + Cy NP N2y + Cigy Ny NP + 7 Cey(MP) NPy + MPy NE(yy) + © Cigp (M
NP2 + MP N ) (73)

Using equation (66) in (73) we can obtain equation (72). From equation (72), it is easy to observe that y = 0 and © = 0.

Hence:

Theorem 7.2: If X'4 is a concurrent vector field in a C-reducible areal space X,, parameterised by C(2), scalars y and ©
assume vanishing values.

Corresponding to tensor C*%,%, we have tensor S4°°,%,, defined as Rastogi [7]

SABPCm = (3P0 {0 CABR CPF o (74)
Multiplying equation (74) by X'a X™s and using equation (66) and (67), we can get
XiA Xme SAiBjDka —4 (p2 gthE(thtE thFp_ thEt thFp) (75)
Equation (75), when solved yields
Xia X6 SABLS =0 (76)
Hence:
Theorem 7.3: If X'a is a concurrent vector field in an areal space X, parameterised by C,, the curvature tensor SAiBjDka

satisfies equation (76).

Tensor C*%;° ik, r in X, parameterised by C,. Differentiating equation (38) with respect to x', and using equation (64), we

can obtain after some tedious calculation

CABPk = Agye MA MB MP, + Ay N2 oy N8y NPk + Ay N2y N2y NPy +3(A%,%) {A@y MAMB NP gy +
Ay MA MZ) NP + Agye MA NE 1y NPy + Ay Ny NPy NPy + Ay MY NP NPy + Ay N ay NPy Ny +
Agoyr MANE 0 NPy + NPy N8 )3 (77)

Where we have put
A(l)r = C(l) - 3 ’Y C(4 h + 3 6 C(S) Jr, A(2)r C(Z) r + 3 B C(G) h - 3 e C(7) kr, (78)

Aar=Cu,r t3BCueir+37Ce Kk, Auy=Cuy + + (BCaqy—27C) Nt +2 0 Cg) Jn, (79)
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Asy=Cp i+ (BCopt20Cg)jr + (v Cuy— O Cs)) k=2 v Cpaoy Ny, (80)
Aer=Ce.r - (1 Coy =2 B Ciy) i + O Crry Jr =2 © Cao ki, (81)
Aar=Ca),r +BCelr Hy Cp =2 © Cg)) ke +2 B Cag) (82)
Agy=Ce 1t (O Cu+2BCe)jr—v Ceo hr + 2y Cag ki (83)
Aer=Ce,r - (0 Cg) -2y Cp)) ke + B Cigy Ny +2 B Caao) s (84)
Aoy = Caoy,r T (BCy + O Cpg) jr + (B C5)— v Cry) he + (¥ C5) — © Ce)) kr (85)

Differentiating equation X'a CA%. =2 ¢ h®Py, for X, parameterised by Cy, we get on simplification

M®; MPc{2a(Cay M*; + Ciay Ny + Cio) N%ay) + B Ay + 7 Ayt + © Ay} + N2y NP 2a(Cp) Ny + Cie) MY
+Ciy N + B Agr + 7 Agy + © Ay} + NP N2 (Ra(Cig) Ny + Cigy M7, + Cig) N*(1y) + B Ay + ¥ Ay + © Ay} +
(M3 NPy + M% NBuy) Aa(Cay MY + Ci) N¥uy + Cuoy N%2) + B Ay + 7 Ay + © Augd+ (MB NPy + M
N®2) {2a(C M* + Cag) N(ay + Cigy N%a) + B Ay + 7 Aoy + © A+ (N*wj N2 + Ny Noy) {ha(Caoy M + Cyg)
N"wr + Cio) N*2) + B Aoy + v Ay + © Agr} =2 ¢, h%% (86)

Multiplying equation (86) by g's*, we get
B(Awy + Agyr + Agy) + Y(Agr + Ay + Agy) + O(Agy + Ay + Agy) = 129, - C g MY, (87)
Hence:

Theorem 8.1: A four-dimensional areal space X, parameterised by C, is such that if, X4 is a concurrent vector field,

coefficients defined by equations (78) to (84) satisfy equation (87).
In case of a C-reducible areal space equations (78) to (85) will change to

Awr=Cu,r  Axr=3 B Ce hr A =3B Cg . Awyr =B Cwy hr, Agyr = B Cayy i Agyr = Cey

An =B Ce ln Agyr=Cea.r Agr=B Ce hr, Augr = 0. (88)
Furthermore, equation (86) shall change to

2 ¢+ h®Pc = M® MP(da Cay MA + B Cryy 1) + N2y NPy {(ka ey M) + B Cpsy 1 3 + NP NPy {Aa(Cgy MP) )
+B Cg . i} + (M Ny + M2, N1y Aa(Cie) N?y)  (8.6)

Also, equation (87) can be expressed as
B(Ca,r+Cp).r +Ce)=12¢, -Cra M (89)
Hence:

Theorem 8.2: A four-dimensional C-reducible areal space X, parameterised by C,, is such that, if X'a is a con-current

vector field, vectors Cyy 1, Cig) r, Cg) , r Shall satisfy equation (89).
Tensor C*%,°um & in X, Parameterised by C,.
Using covariant derivative given in equation (18), we can obtain

LiA//jB = L_l(MiA MBJ' + Ni(l)A NB(l)j + Ni(z)A NB(z)j) = (1/2) L-l hiAjB s (90)
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Miasi® = L(- L'a M3 + Nigya U3 + Nigya VB, (91)
N'wan® = L L'a Ny — M'a U + Niga WE), (92)
Ni(2)AI/jB =L(-L'a N® ) — M'a VB - Ni(l)A we), (93)

where vector fields U®;, V% and W®, in an areal space X, parameterised by C,, are similar to \V-connection vectors of
Finsler space.

Taking this type of covariant derivative of the vector field X', and using equations (90), (91), (92), (93), we can obtain

X'anE = L'afayF — LB M5+ y NS + © NE )} + Mia{By + L™ (/2 M5 —y U5, — © VE)} + Niga{y© + L™
(/2 NEpy; + B U —© WE)} + Niga {07 + L™ (/2 NE(p; + B VE + v WE)} (94)

Differentiating equation (36) and using equations (90), (91), (92), (93), we get after some lengthy calculations

CA%P ™ = By MA M® MP+ By & Ny Ny N2y + By = Ny NP NP -3 (A%°0) L LH[Cy M5
M® MPc + Ciy NEar N°wj NPwi + Cy N NP NP + CpfME(MP) NP + MPy N°(y) + N5y M%) MPG +
Ce{M5(M? NPgit MP N°gy) + N5 M7 MP} + Co NN MP + N2q M%) + M5 N N°wd +
Ca{N“wiN®w; N%ak + N0 N°wi) + N5 Ny NPy} + CefM™ Ny NPgp + N (M%) N2 + MPy N°y)} +
Ca{N“r N N2y + NNy N2+ N2 N°0d} + CaodM=H(N° NP + N NPy + NEay(M%j Ny + MPy
NB(Z)j) + NE(z)r(MBj ND(l)k + M° NB(l)j)}] + Z(AiBjDk) {Bw & M4 MBj ND(l)k + By & MA MBj ND(z)k + By & MA NB(l)j ND(1)|<
+Bgy - N N2 NP + Big) = M N NP+ By = Ny NP NP + Bagy i~ MAi(N®jj NP + NP NPy}

(95)
where we have taken
Bayr = Cayr — 3 L*(Cra) U — Ci5) V), (96)
B(g) rE = C(g)//rE +3 L_l(C((;) UEI— - C(7) WEI—), (97)
B(3) rE = C(3)//rE +3 L_l(C(g) VEr — C(g) WEI—), (98)
B = Cuyn + L{(Cqy — 2 C(e)) U5, + C(5y W5, — Cay V53, (99)
B = Ceyn + L{Cqy— 2 Cg))V5, + Cigy W5, — 2 iy U5}, (100)
E_ E -1 E E E
Ber =Ceur —L{(C)—2C) U5+ Cppy V5 + Cpagy W}, (101)
E_ E -1 E E E
Bryr =Cuur +L{(Cp—2Cg) W5+ C) Vi +2Cpup) U}, (102)
E _ E -1 E E E
Ber =Cemr — L {(Cg - 2C) Vi + Cg U =2 Cpagy W}, (103)
B 1" = Coyir - L™{Cz) — 2 C) W — Cig U5 — 2 Cag) V5], (104)
Baoyr~ = Caoyr™ + L {(Cuy — C)) V5 + (C5) — Czy) U% + (C) — Cgy) W5} (105)

Hence:

Theorem 9.1: In an areal space X, parameterised by C,, the covariant derivative expressed as in (18) of the tensor field

CAP° iis given by equation (95).

Differentiating equation X'a CA%% = 2 ¢ h®P, we can obtain
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X'anE CABP+ Xia CABPuE = 2@ P+ ¢ h8P5) (106)
Using equations (38) and (93), we get

Xan® CABPc= [Cay MB MP+ Ciap(MB NPyt MP NPqry) + Ciey(MP) Nyt MOy N (o) + Ciey NPy NPy + Cp
N®e2; NPe + Caoy(N%wy Ny + NPy N8y [Bi + L2 M®, — y US, — © VE)] + [Cpy NB1y NPy + Cray M% MPy +
Cio(M% NPy + MPi Ny) + Cy(N°iay NP + Ny Napi) + Cio) Ny NP + Caof(MPj Ny + M2k NP ]y” + L
/2 Ny + B U5 — © W] + [C NPy N°ey + Cgp MP MP + Cry Ny NP + Cigp(M% NP + MPk NP) +
Co)(N®wyi NPy + N2y Ny) + Cao)(M® NP gy + MPi NBuy) 1[0 + L™ (/2 NF(py, + B VE + v WE)] (107)

Using equations (63) and (94), we can obtain

X'a CAPPui” = BIBay - M% MP + By & (M® NPy + MPy NBy) + Bis) F(M®; NPy + MO, NB(3)) + Bg) = NPy,
NPk + By N2 NPy + Bragy - (N®ay NPy + NPy NP0)d] + ¥[Bay 1= Ny NPy + Biay = MB MO+ By = (MP NPy
+ M2 NPy) + By o™ (NP NPy + N2y Noy) + Bigy = NP NPy + Bagy (M® NPyt MPy NB)] + O[Bgg) = N°
N°@k + By - M% M2+ By SNy NPy + By (MP) NPy + MPy MPiay) + Bigy “(NPayy NPy + NPy N%) + By
(M® NPy + M2 NB )] + L ME{C (o M® My + B L MP + B L% M%) + Ciap(a (M% Ny + MPy NBqy) + + (v
MO + B NPy L + (v M®, + B NB10) L) + Cy(@(M? NPk + MPy NB@p)) + + (0 MP + B N°() LB + (6 M% + B
NPey) L2 + Ci(a NPy NPuu + B NPy L% + v NP L2 + Ciga N°py NPg + O(NPyc LY + N°py L) +
Craoy( NPy NPy + N0y NP (i) + (© NP(py + 7 NPy L% + (0 NPy + v N°0y) L2} + NEuy{ Cp(a N®yj NPy +y(L,
NPy + L2 N®qy) + Ciay(a M% MOy + BMPy LB + MB; L)) + Ci)(a(M® N2y + M®; NP ) + (B NPy + v M%) LO + (B
NP+ v M2 L) + Ca(alNPayy Ny + NPy Nayp) + (7 NPy + © NBy) LOy + (v NPy + © NPy L) + Cgp(@ NP
NPk + ONB 25 L% + NP0y L)) + Caoy(a(M® NPy + MP NB ) + (B NPy + © M%) LO + (B NPy + © MP) L)} +
NE o) Ciay(e N8z NPy + O(LE NP + LP NB(3))) + Csy(ae MP MPy + B(LE MPy + LP M®))) + Cry(a NBay; NPy + B LY,
Ny + 7 L2 N31y) + Cig(a(M® NPy + MP NBy) + (B NPy + © M%) LP + (B NPy + © M%) L% + Cig(a(N°y
NP2 + NPy Ny) + (v N8y + © NBqy) LP% + (y NPy + © NP(py) L + Cragy(a(M®; NPy + MOy N2py) + (B NPy + v
M®)) L%+ (B NPy + v M) LE)} (108)

Substituting from equations (107) and (108) in (106) and also the values of terms on the right- hand side we get on

simplification

M® MO Cayy (B + L3 /2 M =y U = © VE)} + Cydyu” + L3 /2Ny + B U5, — © WE)} + Cg {Oy" +
L3 /2N + B VE +y WE)} + (BB~ +v By +© By - 4 i)l + NPy N°wilCee){Bir + L (3 2 M5, —y U5 -
O VE)} + Coplvm + L3 a/2N gy + B U5 = © W)+ Cy {0y + LB a2 N + B VE +y W)} + (B Bggyr +vBeyr
+© By — 4 ¢u)]+ N2 N°oudCeg B + L3 @2 M5 — v U - © VE)} + Cgdv + L7 w2 Ny + p U - ©
WE)I+ Ca (04" + L3 w2 Ny + B VE +y WE)} + (B B~ + v Ber™ + 0 Bgyi™ - 4 o)1+ (M%) NPy + MOk NPy
Cay{Bi= + L3 a2 ME —y U5, —© VE)} + Ce) {yi™ + L3 /2 NF(yy + B UE, — © WE)} + Cag) {04F + L3 /2 NFpy, + B
VE +y WE)L + (B B~ + 7 B + © Bag I+ (M%) NPy + M2 NBpy) Cigy By + L3 w2 M5 —y U5, —© VE)} +
Cao iy + L3 w/2NFyy + B U5, — O WE)} + C) {64 + L3 2N + B VE, +7y W5)} + (BB~ + 7 Buoyi~ + © By
)+ (NP NPk + N8y NPy Coagy {Bin™ + LB a/2 M, —y U5, = © VE)} + Cipyfyi” + LT3 /2 Ny + B U, — © WE)}
+C@ {Ou" + L3 W2Np + B V5 +7 W)} + (B Buoyr + v Bayi™ + 0 By )] + LM {Cqy( B L% M°k+ B L% M?) +
Cay (y M2+ BNy L%+ (v M% + B NP1 ) L%)  + Cs) (O MPy + B NP () L% + (0 MPj + B NP (3)) L°) + Cep(B NP oy
L% +v N°u; L% + Cigy(© (NP L + NPz L)) + Cragy ((© NPiaye + 7 NPy L + (O NPy + v N°gy) LOy) + 2(L% MP,
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— L2 M®)} + NS {Cy v(L%j NPy + L2k NP1y) + Ciap(BMPi L%} + M LPy) + Cigy(B Ny + 7 M%) L% + (B NPy + v
MP) L) + Cary((y NPy + © NByy) L2 + (¥ NP + © NPy L) + CO(N® L% + N0y L) + Crao)(B NPz + ©
M®) L2 + (B NPy + © MP) L) + 2(L% NPgyc — LPy NP(yy) + NE{Cs) O(L®; NPy + LPy NP(py) + Cisy B(L® MOy + LO,
M®) + Cir)(B L% NPy + v Lk Nqy) + Cig(B N°izy + © M) L%+ (B NP+ © MPy) L) + Cyo) (v NP + © NPy) L
+ (v NP+ © NP1y L) + Craop((B N°payy + 7 M) L2+ (B NPy + v MPy) L) + 2 (L% NPy — LO NP (o) 3] — WE(NP
NPy + NPy NPy — 2 N8 NP1 = 0. (109)

Hence:

Theorem 9.2: In an areal space X, parameterised by C,, equation (106), when expanded is expressed in the form of
equation (109).

If the space X, is also C-reducible space, equation (109) shall be expressed as

M® MO Coy{Bu + L3 @2 M5 =y U5, = © VE)} + (B By~ + v By~ + © B~ - 4 ¢i)] + Ny,
Nl Ce (B + L' 3 2 M5 =y US = © VE)} + (B By~ + 7 By + © By~ — 4 9]+ NPy N2 [Ceg (B + L™(3
W2M5 -y U5 = O VE)} + (BB +vBer + O Bg -4 ¢5)] + (M%) Ny + MO NB i) [Cogy {yin™ + L3 a/2 Nyy, + B
U5 —© W)} + (B By~ + v Bg)r + O Bug )] + (M NPy + M2 NBy) Cgy {07 + L3 /2Ny + B VE +7y WE)} +
(BB~ +7Bao . + O B )] + LIME{C( B LY MP+ BLO M) + Ce)(B NP(ay L% + 7 N L) + Cgy(© (NP L
+ N8 LP) + 2(L% MPy — L2 MP)} + N {Ce)((B Ny + v M%) L% + (B NPy + v M2 L) + 2(L% NPy — L
N} + N {Ce)((B N°; + © M%) L%+ (B NP + © M7 L) + 2 (L% NPy — L% NP)F — WE (NP 1y NP + N8y
NPk — 2 N8z NP1 = 0, (110)

in which we can put B(l) rE = C(l)//rE, B(g) rE = 3L_1C(6) UEr B(3) rE =3 L_lC(g) VEr, B(4) rE = L_l(C(l) -2 C(g))UEr )
B =L (Cuy—2 Cg) V5 By = Ceopn Bayr- = Ce) Vo Bgyr- = Cayir > Boyr = - Cig) U, Braoyr = (Ciey— Cgy WE.
Hence:

Theorem 9.3: In a C-reducible areal space X, parameterised by C,, if X' is a concurrent vector field, equation (110) shall

be satisfied.
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